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1 Multiple Testing via Control of the False Discovery Rate

1.1 False discovery rate

In our multiple testing setup, we have data X ∼ Pθ, hypotheses Hi : θ ∈ Θ0,i for
i = 1, . . . ,m, and p-values p1, . . . , pm. We also denote the rejection set as R(X) ⊆
{1, . . . ,m}and the true null set as H0 ⊆ {1, . . . ,m}. We have been trying to control
the familywise error rate (FWER),

Pθ(|H0 ∩R| ≥ 1) ≤ α.

However, if we are making several hundred rejections, it might be okay if we only have a
few false alarms.

Definition 1.1. Benjamini and Hochberg (1995)1 defined the false discovery propor-
tion (FDP)

FDP =
V

R ∨ 1
, V = |H0 ∩R|, R = |R|.

This is the probability is that a randomly selected rejection is a false one, which we
want to control. The maximum in the denominator is just so if R = 0, we don’t divide by
0.

Definition 1.2. Benjamini and Hochberg also define the false discovery rate (FDR)

FDR = Eθ[FDP].

Benjamini and Hochberg didn’t just introduce the FDR; they introduced a way to
control it.

1They proposed this in 1988, but this radical idea of accepting some false discoveries took 7 years for
any journal to accept. Professor Fithian has heard that this is the most cited paper in the entire field of
statistics.
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1.2 The Benjamini-Hochberg procedure

Let the p-values have order statistics p(1) ≤ · · · ≤ p(n). Then let RBH = max{r : p(r) ≤ αr
m },

so the RBH rejection set is H(1), . . . ,H(RBH). That is, we reject Hi if pi ≤ αRBH

m .

In this procedure, we reject all the hypotheses with p-values up until the last point
which is below the line; even if a point is above the line, we reject it as long as there is
a further point which is below the line. We can compare this to Holm’s procedure, which
has a lower line, since we are comparing p(k) to α

m−k+1 :

If m = 10000, then for Holm’s procedure to make R = 100 rejections, p(R) ≤ α
9901 . But for

BH to make 100 rejections, we need p(R) ≤ α100
10000 = α

100 .

Remark 1.1. One issue with controlling the FDR instead of the FWER is that you
can cheat. Suppose you have 5000 hypotheses you care about, but you can’t make any
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rejections. Then you can throw in 10000 clearly false hypotheses and be able to make a
lot more rejections.

To understand this procedure, first consider rejectingHi iff pi ≤ t for some fixed t. What
is the false discovery proportion? Suppose t = 5/m. Then we expect about 5 rejections of
null hypotheses. If we get 100 rejections, then we can say with more confidence that we
must have had some correct rejections.

An equivalent formulation of the Benjamini-Hochberg procedure is to define

F̂DPt =
mt

Rt ∨ 1
, Rt = #{i : pi ≤ t}.

Then we can let
t∗(X) = max{t : F̂DPt ≤ α}

and reject Hi if pi ≤ t∗.

This is equivalent because the rejection set only depends on the order statistics of the
p-values and does not actually need the information of t∗; we reject H(1), . . . ,H(R), where

R = max{r : F̂DPp(r) ≤ α}

= max{r :
mp(r)
r ≤ α}

= max{r : p(r) ≤ αr
m }.

1.3 Finite sample control of FDR using the Benjamini-Hochberg proce-
dure

This makes sense on controlling the FDR from an asymptotic perspective (if we let the
number of samples and rejections both go to infinity), but there are many interesting
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multiple testing problems where we only reject, say, 10 hypotheses. Asymptotic control is
philosophically unsatisfactory here, but fortunately, we do have finite sample control with
the Benjamini-Hochberg procedure.

Theorem 1.1. The Benjamini-Hochberg procedure controls FDR ≤ α.

Here is a celebrated proof due to Stoiey, Taylor, and Siegmund (2002) based on optional
stopping of a martingale. Since we are looking at the last time the line crosses the α
threshold, we need to index time backwards, starting from t = 1. This proof assumes that
the p-values pi are independent and that pi ∼ U [0, 1] for i ∈ H0.

Proof. Then define Vt = #{i ∈ H0 : pi ≤ t} ≤ Rt. Then we estimate

FDPt =
Vt

R ∨ 1

by

F̂DPt =
mt

Rt ∨ 1
.

This gives

FDPt = F̂DPt ·
Vt
mt︸︷︷︸
:=Qt

.

This quotient Qt is what we will apply the optional stopping argument to. This gives

FDR = E[FDPt∗ ]

= E[F̂DPt∗ ·Qt∗ ]

= αE[Qt∗ ]

Using the optional stopping theorem,

= αE[Q1]

= α
m0

m
.

It now remains to show that Qt is a martingale and t∗ is a stopping time with respect
to the filtration Ft = σ(pi ∨ t, i = 1, . . . ,m); we could alternatively use Ft = σ(Vs : s ≥ t).
Conditional on Ft, we know Vs and F̂DPs for all s ≥ t. As a result, t∗ is a stopping time
(1{t∗≥s} is Ft-measurable). To check that this is a martingale, we have for s < t that

E[Vs | Vt = v] = v
s

t
.
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(More precisely, we have that E[Vs | Ft] = Vt
s
t .) So

E
[
Vs
ms
| Vt
mt

= q

]
=

1

ms
· (qmt) · s

t
= q.

(More precisely, we have E[Qs | Ft] = Qt.)

Here is another proof:

Proof. Define Bi = 1{Hi rejected}. The we can decompose

V

R ∨ 1
=
∑
i∈H0

Vi
R ∨ 1

.

By the linearity of expectation, we can say that

FDR =
∑
i∈H0

E
[
1{i rejected}

R ∨ 1

]
︸ ︷︷ ︸
want to show ≤ α/m

.

Assume that p1, . . . , pm are independent. Then condition on p−i. We will be in good shape
if we can show that

E
[
1{i rejected}

R ∨ 1
| p−i

]
≤ α

m
.

Rewrite the indicator as 1{pi≤αR/m}. We would like to pull out R, but R is not a deter-
ministic function of p−i. The key observation (which is generalizable) is that if pi were
already being rejected and we send it to 0, then it is still rejected:

Define R(i) = R(p−i, 0). We claim that on the event {pi ≤ αR
m }, R

(i) = R. So we can
look at

E

[
1{pi≤αRm }

R ∨ 1
| p−i

]
= E

[
1
{pi≤αR

(i)

m
}

R(i)
| p−i

]
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=
1

R(i)
P

(
pi ≤

αR(i)

m
| p−i

)

=
1

R(i)

αR(i)

m

=
α

m
.

Professor Fithian and a collaborator were able to generalize this proof to non-independent
pi by conditioning on something other than p−i.
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