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1 Multiple Testing via Control of the False Discovery Rate

1.1 False discovery rate

In our multiple testing setup, we have data X ~ Py, hypotheses H; : § € ©Oq; for
i = 1,...,m, and p-values p1,...,pn. We also denote the rejection set as R(X) C
{1,...,m}and the true null set as Hop C {1,...,m}. We have been trying to control
the familywise error rate (FWER),

Po(|Ho ﬂ'R’ >1)<a.

However, if we are making several hundred rejections, it might be okay if we only have a
few false alarms.

Definition 1.1. Benjamini and Hochberg (1995)! defined the false discovery propor-
tion (FDP)
v
FDP = ——— V=[HoNR|, R=1R|.
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This is the probability is that a randomly selected rejection is a false one, which we
want to control. The maximum in the denominator is just so if R = 0, we don’t divide by
0.

Definition 1.2. Benjamini and Hochberg also define the false discovery rate (FDR)
FDR = Ey[FDP].

Benjamini and Hochberg didn’t just introduce the FDR; they introduced a way to
control it.

They proposed this in 1988, but this radical idea of accepting some false discoveries took 7 years for
any journal to accept. Professor Fithian has heard that this is the most cited paper in the entire field of
statistics.



1.2 The Benjamini-Hochberg procedure

Let the p-values have order statistics p() < -+ < p(,). Then let RBH — max{r : Py < %},
BH
so the RPH rejection set is Hg), ..., Hgeny. That is, we reject H; if p; < %.

In this procedure, we reject all the hypotheses with p-values up until the last point
which is below the line; even if a point is above the line, we reject it as long as there is
a further point which is below the line. We can compare this to Holm’s procedure, which
has a lower line, since we are comparing p() to m+1~c—|—1:

If m = 10000, then for Holm’s procedure to make R = 100 rejections, p(ry < gg57- But for

BH to make 100 rejections, we need p(g) < %00% = 100

Remark 1.1. One issue with controlling the FDR instead of the FWER is that you
can cheat. Suppose you have 5000 hypotheses you care about, but you can’t make any



rejections. Then you can throw in 10000 clearly false hypotheses and be able to make a
lot more rejections.

To understand this procedure, first consider rejecting H; iff p; < ¢ for some fixed t. What
is the false discovery proportion? Suppose t = 5/m. Then we expect about 5 rejections of
null hypotheses. If we get 100 rejections, then we can say with more confidence that we
must have had some correct rejections.

An equivalent formulation of the Benjamini-Hochberg procedure is to define

FDPt == m, Rt == #{’L D S t}
t

Then we can let

t*(X) = max{t : FDP, < a}t

and reject H; if p; < t*.

This is equivalent because the rejection set only depends on the order statistics of the
p-values and does not actually need the information of t*; we reject Hyy, ..., H(g), where

R = max{r: Fﬁp(r) < a}
= max{r: "2 < o}
= max{r : py < 9}
1.3 Finite sample control of FDR using the Benjamini-Hochberg proce-
dure

This makes sense on controlling the FDR from an asymptotic perspective (if we let the
number of samples and rejections both go to infinity), but there are many interesting



multiple testing problems where we only reject, say, 10 hypotheses. Asymptotic control is
philosophically unsatisfactory here, but fortunately, we do have finite sample control with
the Benjamini-Hochberg procedure.

Theorem 1.1. The Benjamini-Hochberg procedure controls FDR < a.

Here is a celebrated proof due to Stoiey, Taylor, and Siegmund (2002) based on optional
stopping of a martingale. Since we are looking at the last time the line crosses the «
threshold, we need to index time backwards, starting from ¢ = 1. This proof assumes that
the p-values p; are independent and that p; ~ UJ0, 1] for i € Hy.

Proof. Then define V; = #{i € Ho : p; <t} < R;. Then we estimate

Vi
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This quotient Q); is what we will apply the optional stopping argument to. This gives

FDR = E[FDPy-]
= E[FDPy¢ - Q¢+]
= E[Qt*]
Using the optional stopping theorem,
= aE[Q]
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It now remains to show that ); is a martingale and t* is a stopping time with respect
to the filtration F; = o(p; Vt,i = 1,...,m); we could alternatively use F; = o(Vs : s > ).
Conditional on F;, we know Vs and F/Di% for all s > t. As a result, t* is a stopping time
(L{g+>sy is Fy-measurable). To check that this is a martingale, we have for s <t that

H%|%:ﬂ:v;
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(More precisely, we have E[Qs | Fi] = Qy.) O

Here is another proof:

Proof. Define B; = 1y, rejected}- L'he we can decompose

va R\/l

By the linearity of expectation, we can say that

1
{i rejected}
FDR = » IE[ Ul ] :

1€Ho
want to show < a/m
Assume that pq, ..., pm are independent. Then condition on p_;. We will be in good shape
if we can show that L
E {i rejected} | < g
RV1 m

Rewrite the indicator as 1y, <4r/m}- We would like to pull out R, but R is not a deter-
ministic function of p_;. The key observation (which is generalizable) is that if p; were
already being rejected and we send it to 0, then it is still rejected:

Define R®) = R(p_;,0). We claim that on the event {p; < %?’}, R® = R. So we can
look at
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Professor Fithian and a collaborator were able to generalize this proof to non-independent
p; by conditioning on something other than p_;.
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